


What is Stream? 

●  Primary means for data collection in Reactor 
o  REST API to send individual event 

 
●  Consumable by Reactor Programs 

o  Flow 
o  MapReduce 



Why on File? 

●  Data eventually persisted to file 
o  LevelDB -> local file 
o  HBase -> HDFS 

●  Fewer intermediate layer == Performance ++ 
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Directory Structure 

/[stream_name] 
    /[generation] 
        /[partition_start_ts].[partition_duration] 
            /[name_prefix].[sequence].("dat"|"idx") 



Directory Structure 
/who 
    Stream name = who 
 
/who/00001 
    Generation = 1 
 
/who/00001/1401408000.86400 
    Partition start time = 2014-05-30 GMT 
    Partition duration = 1 day 



File name 
●  Only one writer per file 

o  One file prefix per writer instance 
●  Don’t use HDFS append 

o  Monotonic increase sequence number 
o  Open file => find the highest sequence number + 1 

 
/who/00001/1401408000.86400/file.0.000000.dat 
    File prefix = “file.0”. Written by writer instance “0” 
    Sequence = 0. First file created by the writer 
    Suffix = “dat”, an event file 



Data Block 

Header 

Event File Format 
"E1" Properties = Map<String, String> 

Tail 

Timestamp Block size Event 
Event Event ... 

Data Block 

Data Block 

... 

Timestamp Block size Event 
Event Event ... 

Timestamp Block size Event 
Event Event ... 

Timestamp = -1 

●  Avro binary serialize “Properties” and “Event” 
●  Event schema stored in Properties 



Writer Latency 

●  Latency 
o  Speed perceived by a client 
o  Lower the better 
 

●  Guarantee no data loss 
o  Minimum latency == File sync time 



Writer Throughput 

●  Throughput 
o  Flow rate 
o  Higher the better 

●  Buffer events gives better throughput 
o  Higher latency? 

●  Many concurrent clients 
o  More events buffered write 
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How to synchronize 
access to File Writer? 



Concurrent Stream Writer 
1.  Create an event and enqueue it to a Concurrent Queue 
2.  Use CAS to try setting an atomic boolean flag to true 
3.  If successfully (winner), proceed to run step 4-7, loser go to step 8 
4.  Dequeue events and write to file until the queue is empty 
5.  Perform a file sync to persist all data being written 
6.  Set the state of each events that are written to COMPLETED 
7.  Set the atomic boolean back to false 

o  Other threads should see states written in step 6 (happened-before) 
8.  If the event owned by this thread is NOT COMPLETED, go back to step 2. 

o  Call Thread.yield() before go to step 2 



Correctness 

●  Guarantee no losing events 
o  Winner, always drain queue 

§  Own event should be in the queue 
o  Losers, either 

§  Current winner starts drains after enqueue 
§  Loop and retry, either 

●  Become winner 
●  Other winner start drains 



Scalability 

●  One file per writer process 
o  No communication between writers 

●  Linearly scalable writes 
o  Simply add more writer processes 



How to tail stream? 



Merge on Consume 

File1 File2 File3 

Multi-file reader 

Merge by event timestamp 



Tailing HDFS file 

●  HDFS doesn’t support tail 
o  EOFException when no more data 

§  Writer not yet closed 
o  Re-open DFSInputStream on EOFException 
o  Read until seeing timestamp = -1 



Writer Crashes 

●  File writer might crash before closing 
o  No tail “-1” timestamp written 

●  Writer restart creates new file 
o  New sequence or new partition 

●  Reader regularly looks for new file 
o  No event read 

§  Look for file with next sequence 
§  Look for new partition based on current time 



Filtering 

●  ReadFilter 
o  By event timestamp 

§  Skip one data block 
§  TTL 

o  By file offset 
§  Skip one event 
§  RoundRobin consumer 



Consumer states 

●  Exactly once processing guarantee 
o  Resilience to consumer crashes 

●  States persisted to HBase/LevelDB 
o  Transactional 
o  Key 

§  {generation, file_name, offset} 
o  Value 

§  {write_pointer, instance_id, state} 



Consumer IO 

●  Each dequeue from stream, batch size = N 
o  RoundRobin, FIFO (size = 1) 

§  ~ (N * size) reads/skips from file readers 
§  Batch write of N rows to HBase on commit 

o  FIFO (size >= 2) 
§  ~ (N * size) reads from file readers 
§  O(N * size) checkAndPut to HBase 
§  Batch write of N rows to HBase on commit 



Consumer State Store 

●  Per consumer instance 
o  List of file offsets 

§  [ {file1, offset1}, {file2, offset2} ] 
o  Events before the offset are processed 

§  Perceived by this instance 
o  Resume from last good offset 
o  Persisted periodically in post commit hook 

§  Also on close 



Consumer Reconfiguration 

●  Change flowlet instances 
o  Reset consumers’ states 

§  Smallest offset for each file 
o  Make sure no events left unprocessed 



Truncation 

●  Atomic increment generation 
o  Uses ZooKeeper in distributed mode 

§  PropertyStore 
●  Supports read-compare-and-set 

o  Notify all writers and flowlets 
§  Writer close current file writer 

●  Reopen with new generation on next write 

§  Flowlet suspend and resume 
●  Close and reopen stream consumer with new generation 



Futures 

●  Dynamic scaling of writer instances 
o  Through ResourceCoordinator 

●  TTL 
o  Through PropertyStore 



Thank You 


