

What is Stream?

●  Primary means for data collection in Reactor
o  REST API to send individual event

●  Consumable by Reactor Programs

o  Flow
o  MapReduce

Why on File?

●  Data eventually persisted to file
o  LevelDB -> local file
o  HBase -> HDFS

●  Fewer intermediate layer == Performance ++

10K Architecture
Client

Client

Client

Client

. . .
. .

Writer

Writer

R
O
U
T
E
R

Files

Files

Flowlet

HTTP
POST

Write

Write

Read

Read

HBase

States

Directory Structure

/[stream_name]
 /[generation]
 /[partition_start_ts].[partition_duration]
 /[name_prefix].[sequence].("dat"|"idx")

Directory Structure
/who
 Stream name = who

/who/00001
 Generation = 1

/who/00001/1401408000.86400
 Partition start time = 2014-05-30 GMT
 Partition duration = 1 day

File name
●  Only one writer per file

o  One file prefix per writer instance
●  Don’t use HDFS append

o  Monotonic increase sequence number
o  Open file => find the highest sequence number + 1

/who/00001/1401408000.86400/file.0.000000.dat
 File prefix = “file.0”. Written by writer instance “0”
 Sequence = 0. First file created by the writer
 Suffix = “dat”, an event file

Data Block

Header

Event File Format
"E1" Properties = Map<String, String>

Tail

Timestamp Block size Event
Event Event ...

Data Block

Data Block

...

Timestamp Block size Event
Event Event ...

Timestamp Block size Event
Event Event ...

Timestamp = -1

●  Avro binary serialize “Properties” and “Event”
●  Event schema stored in Properties

Writer Latency

●  Latency
o  Speed perceived by a client
o  Lower the better

●  Guarantee no data loss
o  Minimum latency == File sync time

Writer Throughput

●  Throughput
o  Flow rate
o  Higher the better

●  Buffer events gives better throughput
o  Higher latency?

●  Many concurrent clients
o  More events buffered write

Inside Writer
Stream Writer

Netty HTTP

Handler
Thread

Handler
Thread

Handler
Thread

Handler
Thread

File Writer

HDFS

How to synchronize
access to File Writer?

Concurrent Stream Writer
1.  Create an event and enqueue it to a Concurrent Queue
2.  Use CAS to try setting an atomic boolean flag to true
3.  If successfully (winner), proceed to run step 4-7, loser go to step 8
4.  Dequeue events and write to file until the queue is empty
5.  Perform a file sync to persist all data being written
6.  Set the state of each events that are written to COMPLETED
7.  Set the atomic boolean back to false

o  Other threads should see states written in step 6 (happened-before)
8.  If the event owned by this thread is NOT COMPLETED, go back to step 2.

o  Call Thread.yield() before go to step 2

Correctness

●  Guarantee no losing events
o  Winner, always drain queue

§  Own event should be in the queue
o  Losers, either

§  Current winner starts drains after enqueue
§  Loop and retry, either

●  Become winner
●  Other winner start drains

Scalability

●  One file per writer process
o  No communication between writers

●  Linearly scalable writes
o  Simply add more writer processes

How to tail stream?

Merge on Consume

File1 File2 File3

Multi-file reader

Merge by event timestamp

Tailing HDFS file

●  HDFS doesn’t support tail
o  EOFException when no more data

§  Writer not yet closed
o  Re-open DFSInputStream on EOFException
o  Read until seeing timestamp = -1

Writer Crashes

●  File writer might crash before closing
o  No tail “-1” timestamp written

●  Writer restart creates new file
o  New sequence or new partition

●  Reader regularly looks for new file
o  No event read

§  Look for file with next sequence
§  Look for new partition based on current time

Filtering

●  ReadFilter
o  By event timestamp

§  Skip one data block
§  TTL

o  By file offset
§  Skip one event
§  RoundRobin consumer

Consumer states

●  Exactly once processing guarantee
o  Resilience to consumer crashes

●  States persisted to HBase/LevelDB
o  Transactional
o  Key

§  {generation, file_name, offset}
o  Value

§  {write_pointer, instance_id, state}

Consumer IO

●  Each dequeue from stream, batch size = N
o  RoundRobin, FIFO (size = 1)

§  ~ (N * size) reads/skips from file readers
§  Batch write of N rows to HBase on commit

o  FIFO (size >= 2)
§  ~ (N * size) reads from file readers
§  O(N * size) checkAndPut to HBase
§  Batch write of N rows to HBase on commit

Consumer State Store

●  Per consumer instance
o  List of file offsets

§  [{file1, offset1}, {file2, offset2}]
o  Events before the offset are processed

§  Perceived by this instance
o  Resume from last good offset
o  Persisted periodically in post commit hook

§  Also on close

Consumer Reconfiguration

●  Change flowlet instances
o  Reset consumers’ states

§  Smallest offset for each file
o  Make sure no events left unprocessed

Truncation

●  Atomic increment generation
o  Uses ZooKeeper in distributed mode

§  PropertyStore
●  Supports read-compare-and-set

o  Notify all writers and flowlets
§  Writer close current file writer

●  Reopen with new generation on next write

§  Flowlet suspend and resume
●  Close and reopen stream consumer with new generation

Futures

●  Dynamic scaling of writer instances
o  Through ResourceCoordinator

●  TTL
o  Through PropertyStore

Thank You

